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Abstract

This study explores the feasibility of smart-eyewear (S-
EW) technology to automatically extract cardiac and
respiratory signals by head-ballistocardiography (H-
BCG) and to assess cardiorespiratory coupling during a
paced breathing protocol. In 7 healthy subjects, H-BCG
was recorded using an inertial sensor integrated in the S-
EW prototype. Simultaneously, ECG was acquired as a
gold standard. After filtering, respiratory and cardiac
components were derived to detect breathing cycles and
heartbeats, enabling extraction of temporal and
morphological parameters. A  folded scattergram
approach was applied to visualize changes in these
parameters across the respiratory cycle, and differences
between metrics were statistically evaluated. Respiratory
cycle detection showed higher feasibility at respiratory
rates of 6 and 8 seconds per respiratory cycle. Respiratory
phase and rate dependences for both morphological and
temporal H-BCG parameters were observed. These
findings highlight the potential of S-EW technology for
monitoring cardiorespiratory coupling in real-world
scenarios, potentially including spontaneous breathing.

1. Introduction

Cardiorespiratory coupling (CRC) refers to the
complex, linear and nonlinear dynamic interactions
between the cardiovascular and respiratory systems,
governed by multiple mechanisms, including respiratory
sinus arrhythmia, cardio-ventilatory coupling, and
respiratory stroke volume (SV) synchronization [1].
Understanding CRC is essential for assessing autonomic
function and diagnosing cardiorespiratory disorders, as
well as in the field of sports medicine to provide valuable
insights into training effects, pre-competition stress, and
physiological adaptations to various stimuli [2].

Research on CRC has explored different sensor placements
for accurate monitoring. Chest-mounted inertial
measurement units, including Micro-Electro-Mechanical
Systems (MEMS), have been studied, with optimal results
for both heart rate (HR) and breathing rate (BR) estimation
when the sensor is positioned on the thorax around the
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mitral valve area, and for the dorsoventral direction [3].
The growing demand for wearable technologies for
continuous health and fitness monitoring has driven
interest in embedding MEMS in consumer wearables [4].
For MEMS positioned at the head level, the ability to
detect from this head-ballistocardiographic (H-BCG)
signal the respiratory-induced movements, as well as
subtle micro-movements associated with cardiac activity,
has been previously demonstrated by [5]. These micro-
movements occur as each heartbeat propels approximately
12 grams of blood through the carotid arteries, generating
cyclic head accelerations of about 10 mG (or 5 mm
displacement) along the vertical axis [6].

In this context, smart eyewear (S-EW) technology is
emerging as a promising tool for extracting physiological
biomarkers such as HR and BR [7;8]. By embedding
MEMS into the S-EW frame, it is potentially possible to
continuously and unobtrusively monitor the H-BCG in
real-world settings, thus resulting in a passive solution for
long-term health tracking.

This preliminary study aims to evaluate the feasibility of
assessing CRC by the H-BCG signal obtained by a S-EW
during a controlled breathing protocol.

2. Materials and Methods

2.1.  Study Population and Design

Seven healthy volunteers (2 women and 5 men; median
(25th percentile; 75" percentile) age: 25 (25;27) years;
height 172 (164.5;179.5) cm; weight: 69 (63;78) kg) were
recruited. The study protocol was approved by the Ethical
Committee of Politecnico di Milano ( n. 27/2023).

Tri-axial linear acceleration (A-P: antero-posterior, H-
F: head-foot, R-L: right-left) and angular velocity (roll:
around the A-P axis; pitch: around the R-L axis; yaw:
around the H-F axis) were recorded using a MEMS
(LSM6DSL module - ST Microelectronics, Montrouge,
France) integrated into the left frame of a S-EW prototype
(I-SEE, ©EssilorLuxottica,) at a sampling frequency of
100 Hz. Data from the S-EW were collected by Bluetooth
using the Bluefruit Connect smartphone application
(Adafruit Industries, New York, United States).
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Figure 1: Top: respiratory signal obtained by the H-BCG during
one phase of paced-breathing, where red dots indicate the start of
each respiratory cycle. Bottom: corresponding cardiac activity
signal obtained by the H-BCG (Acc. H-F and Roll), where red
dots indicate the detected J peaks for each beat.

Simultaneously, a 1l-lead ECG signal (sampling
frequency 512 Hz) was recorded as a gold standard
(Movesense Flash, Movesense Ltd., Vantaa, Finland),
which also embeds a tri-axial MEMS (sampling frequency
208 Hz). The experimental protocol, with the subject in a
seated position, included:

e 3 minutes free breathing ;

e paced breathing, guided by a recorded audio-guide
[9], including 10 breaths at 4 seconds per respiratory
cycle, 10 breaths at 6 sec, 10 breaths at 8 sec, and 10
breaths at 10 sec;

o four deep breaths followed by an apnoea at the end of
inhalation (full lungs), and 3 minutes of recovery;

o  four deep breaths followed by an apnoea at the end of
exhalation (empty lungs).

At the beginning of the experiment, before sitting,

participants were asked to perform a small jump to

generate a motion artifact in the MEMS signals of both
devices for synchronization purposes.

In this preliminary work, only signals acquired during
the paced breathing phases will be utilized.

2.2. ECG and H-BCG Signal Processing

The ECG signal was pre-processed to remove noise and
breathing-related motion artefacts using a 4"-order, zero-
phase, band-pass Butterworth filter (0.5-30 Hz) [10].
Outliers were removed using the statistical method
“grubs”, and the Pan-Tompkin algorithm was applied to
extract the R peaks [11]. The RR intervals were computed
as the time distances between consecutive R peaks.

The H-BCG signals were processed using two distinct
methods to extract both cardiac and respiratory activity
(Figure 1). For cardiac activity detection, signals of the H-
F acceleration and roll rotations of the head were chosen
[7], and band-pass filtered with 4th-order Butterworth (cut-
off frequencies: 5 and 25 Hz [10]), to enhance intra-beat

vibrations for subsequent beats identification. The J peak,
corresponding to aortic valve opening, was detected beat-
by-beat using an ECG-free algorithm [10] based on a
template-matching technique [12].
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Figure 2. Morphological and temporal parameters computed on
the ECG and H-BCG signals.

To minimize false positives, each J peak detection was
compared with the previously identified R peaks, and
considered valid if only one J peak occurred between
consecutive R peaks. If >2 J peaks occurred between
consecutive R peaks, the heartbeat was deemed invalid. In
cases of two J peaks, the distance from each to its
preceding R peak was compared to the median of all
previous J-R intervals, retaining the J peak closest to the
median and discarding the other one.

For respiratory activity, the displacement in the P-A
direction of the H-BCG signal, computed through a double
integration, was considered. Pre-processing included a 4t"-
order, high-pass Butterworth filter (0.1 Hz). The beginning
and end of each paced-breathing phase in the protocol were
identified by examining the derived respiratory signal. For
each participant, each phase was qualitatively scored as
excellent, good, or poor, depending on the ability to
visualize the relevant 10 breathing cycles. Only respiratory
phases classified as excellent were further analysed, by
automatically detecting the beginning of each inspiration
as the minimum of the respiratory signal. Then, based on
the duration of each computed respiratory cycle, defined as
the time difference between two minimum points, only
breaths lasting within £0.5 s of the expected imposed
duration (4, 6, 8, or 10 s) were included in the analysis.

2.3. Computation of
Morphological Parameters

Temporal and

For each subject and phase, temporal and morphological
parameters were calculated (Figure 2), including beat-to-
beat duration from both the ECG (RR) and the H-BCG (JJ),
the peak-to-peak amplitude difference between the J peak
and the preceding minimum point and the corresponding
slope (Slope). RR and JJ intervals were normalized for
each subject and respiratory phase by their respective
longest RR and JJ intervals. Similarly, morphological
parameters, including peak-to-peak amplitude and slope,
were normalized by the maximum amplitude or maximum
slope, separately for each subject and respiratory phase.
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4 s/breath 6 s/breath 8 s/breath 10 s/breath
Respiratory cycles 2 [1;8] 6 [3;8] 6 [5;9] 4 [4;5]
Heartbeats -Acc. H-F 6 [3;24] 34 [17;43] 50 [42;64] 41 [31;49]
Heartbeats - Roll 10 [2;24] 31 [18;38] 40 [39;59] 37 [35:48]

Table 1: Feasibility analysis results for the four respiratory phases of the paced breathing protocol (median [25%; 75" percentile]). The
first row reports the number of selected respiratory cycles for each respiratory phase. The second and third rows show the number of
identified heartbeats per respiratory cycle in the acceleration H-F and roll axis, respectively.

2.4. Folded Scattergrams and Parameters

A folded scattergram (FS) is a graphical representation
that visualizes changes in a parameter of interest, such as
RR, according to the % of the respiratory cycle (0%: start
of inspiration; 100%: end of expiration), as a cumulative
representation over several breathing periods [13]. Each
point on the FS corresponds to a specific value of the
parameter of interest, with the y-coordinate representing
the parameter’s normalized value and the x-coordinate
representing the timing of such event as % of the
corresponding respiratory cycle [13]. For temporal
parameters, such as RR and JJ intervals, the x-coordinate
represents the midpoint between consecutive peaks.

Outliers were removed for each respiratory phase based
on the median and the median absolute deviation (MAD)
methods. The FS points were then fitted with sinusoidal
harmonics in phase and quadrature, up to the third order,
and the coefficients of the Fourier series were estimated by
a least-squares algorithm [13]. The magnitude and phase
of the first three harmonics were calculated.

To evaluate the representativeness of the sinusoidal fit
to the points in the FS and the feasibility of evaluating the
CRC, several figures of merit were computed: coefficient
of determination (R?) and its adjusted version (R? adj);
from the Cosinor analysis [ 14], the acrophase (®), the ratio
between the maximum amplitude (AO) and the midline of
the oscillation (MESOR), along with the p-value of the
Zero-Amplitude test; the median Euclidean distance and
Nearest Neighbour distance.

2.5. Statistical Analysis

The effect of the imposed respiratory frequency phase
was separately assessed on each computed temporal and
morphological parameter using the Friedman test (p<0.05).
If significant, post-hoc pairwise comparisons were applied
to identify specific differences between phases (Wilcoxon
Signed Rank test with Bonferroni Correction).

3. Results

3.1.  Feasibility Analysis

Table 1 reports the number of respiratory cycles and
heartbeats analysed for each protocol phase in both H-F
acceleration and roll signals, highlighting a higher number

of cycles when the duration was 6 or 8 seconds per breath
(s/breath). Additionally, the number of identified
heartbeats in the acc. H-F signal was consistently higher
than in roll, reaching a 20% increase at 8 s/breath. As the
number of analysable respiratory cycles in the 4-s/breath
phase was very low, this phase was excluded from further
analysis.

3.2. Folded Scattergram

Figure 3a shows the FS for temporal and morphological
parameters obtained from one subject as an example. All
parameters show a CRC, highlighting different behaviours
and @ in both temporal and morphological parameters.

3.3.  Statistical Analysis

In RR and JJ intervals, as breath duration increased from
shorter to longer, an increase in OA/MESOR and R?, and
a decrease in Nearest Neighbour Distance and p-value of
the Zero-Amplitude test were noticed. Although this
pattern is present overall, only OA/MESOR and R?
exhibited significant differences between protocol phases,
in RR and JJ intervals, respectively (Figure 3b).

The oscillation within the respiratory cycle of the
morphological parameters was significantly more
pronounced than that of the temporal parameters, as
reflected in the higher OA/MESOR values. While a
general pattern remains visible, fewer and non-significant
differences were observed between the different protocol
phases.

4. Discussion

We conducted a preliminary study to assess the
feasibility of measuring CRC using cardiac and respiratory
data acquired as H-BCG signal by S-EW technology. The
results demonstrated the feasibility of the proposed
approach during a paced breathing protocol with the
subject in a seated position, highlighting that breath
durations closer to physiological values (i.e., 6 and 8
s/breath) were more suitable for highlighting the
phenomenon.

Changes in cardiac morphology and temporal
parameters were visible at different % of the respiratory
cycle and when measuring with S-EW. In particular, it
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Figure 3. (a) Folded scattergram of RR and JJ intervals, Peak-to-Peak amplitude, and Slope for a single subject on the acceleration H-F
axis. The x-axis represents the percentage of the respiratory cycle [%], while the y-axis shows the normalized parameter values [0-1].
The vertical dotted line at 50% of the respiratory cycle represents the imposed end of exhalation-beginning of inhalation. Each coloured
dot corresponds to a heartbeat within the respiratory cycle, and the coloured solid line represents the fitted function. Data is colour-
coded: purple for 6 s/breath, green for 8 s/breath, and blue for 10 s/breath. (b) Boxplots of some of the parameters computed on the H-F
axis on temporal parameters RR and JJ intervals. Horizontal lines indicate significant differences (p<0.05).

appears possible to visualize and quantify physiological
Respiratory Sinus Arrhythmia from H-BCG using the JJ
time series, in alignment with RR intervals, besides the
noisier signal and a lower sampling frequency.
Furthermore, the detected modulation in H-BCG Peak-to-
Peak amplitude and Slope could be a potential correlate of
respiratory-modulated preload and SV variations.

5. Conclusion

This work shows for the first time the feasibility of
automatically measuring CRC when extracting cardiac and
respiratory activity from MEMS embedded in S-EW
technology, with the subject in a seated position during
paced breathing, thus paving the way for future
investigations during spontaneous breathing in real-life
settings.
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