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Abstract 

This study explores the feasibility of smart-eyewear (S-
EW) technology to automatically extract cardiac and 
respiratory signals by head-ballistocardiography (H-
BCG) and to assess cardiorespiratory coupling during a 
paced breathing protocol. In 7 healthy subjects, H-BCG 
was recorded using an inertial sensor integrated in the S-
EW prototype. Simultaneously, ECG was acquired as a 
gold standard. After filtering, respiratory and cardiac 
components were derived to detect breathing cycles and 
heartbeats, enabling extraction of temporal and 
morphological parameters. A folded scattergram 
approach was applied to visualize changes in these 
parameters across the respiratory cycle, and differences 
between metrics were statistically evaluated. Respiratory 
cycle detection showed higher feasibility at respiratory 
rates of 6 and 8 seconds per respiratory cycle. Respiratory 
phase and rate dependences for both morphological and 
temporal H-BCG parameters were observed. These 
findings highlight the potential of S-EW technology for 
monitoring cardiorespiratory coupling in real-world 
scenarios,  potentially including spontaneous breathing. 

 
1. Introduction 

Cardiorespiratory coupling (CRC) refers to the 
complex, linear and nonlinear dynamic interactions 
between the cardiovascular and respiratory systems, 
governed by multiple mechanisms, including respiratory 
sinus arrhythmia, cardio-ventilatory coupling, and 
respiratory stroke volume (SV) synchronization [1]. 
Understanding CRC is essential for assessing autonomic 
function and diagnosing cardiorespiratory disorders, as 
well as in the field of sports medicine to provide valuable 
insights into training effects, pre-competition stress, and 
physiological adaptations to various stimuli [2].  
Research on CRC has explored different sensor placements 
for accurate monitoring. Chest-mounted inertial 
measurement units, including Micro-Electro-Mechanical 
Systems (MEMS), have been studied, with optimal results 
for both heart rate (HR) and breathing rate (BR) estimation  
when the sensor is positioned on the thorax around the 

mitral valve area, and for the dorsoventral direction [3]. 
The growing demand for wearable technologies for 
continuous health and fitness monitoring has driven 
interest in embedding MEMS in consumer wearables [4]. 
For MEMS positioned at the head level,   the ability to 
detect from this head-ballistocardiographic (H-BCG) 
signal the respiratory-induced movements, as well as 
subtle micro-movements associated with cardiac activity, 
has been previously demonstrated by [5]. These micro-
movements occur as each heartbeat propels approximately 
12 grams of blood through the carotid arteries, generating 
cyclic head accelerations of about 10 mG (or 5 mm 
displacement) along the vertical axis [6]. 

In this context, smart eyewear (S-EW) technology is 
emerging as a promising tool for extracting physiological 
biomarkers such as HR and BR [7;8]. By embedding 
MEMS into the S-EW frame, it is potentially possible to 
continuously and unobtrusively monitor the H-BCG  in 
real-world settings, thus resulting in a  passive solution for 
long-term health tracking.  
This preliminary study aims to evaluate the feasibility of 
assessing CRC by the H-BCG signal obtained by a S-EW 
during a controlled breathing protocol. 
 
2. Materials and Methods 

2.1. Study Population and Design 

Seven healthy volunteers (2 women and 5 men; median 
(25th percentile; 75th percentile) age: 25 (25;27) years; 
height 172 (164.5;179.5) cm; weight: 69 (63;78) kg) were 
recruited. The study protocol was approved by the Ethical 
Committee of Politecnico di Milano ( n. 27/2023). 

Tri-axial linear acceleration (A-P: antero-posterior, H-
F: head-foot, R-L: right-left) and angular velocity (roll: 
around the A-P axis; pitch: around the R-L axis; yaw: 
around the H-F axis) were recorded using a MEMS 
(LSM6DSL module - ST Microelectronics, Montrouge, 
France) integrated into the left frame of a S-EW prototype 
(I-SEE, ©EssilorLuxottica,) at a sampling frequency of 
100 Hz. Data from the S-EW were collected by Bluetooth 
using the Bluefruit Connect smartphone application 
(Adafruit Industries, New York, United States).  
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Figure 1: Top: respiratory signal obtained by the H-BCG during 
one phase of paced-breathing, where red dots indicate the start of 
each respiratory cycle. Bottom: corresponding cardiac activity 
signal obtained by the H-BCG (Acc. H-F and Roll), where red 
dots indicate the detected J peaks for each beat. 

Simultaneously, a 1-lead ECG signal (sampling 
frequency 512 Hz) was recorded as a gold standard 
(Movesense Flash, Movesense Ltd., Vantaa, Finland), 
which also embeds a tri-axial MEMS (sampling frequency 
208 Hz). The experimental protocol, with the subject in a 
seated position, included: 
• 3 minutes free breathing ; 
• paced breathing, guided by a recorded audio-guide 

[9], including 10 breaths at 4 seconds per respiratory 
cycle, 10 breaths at 6 sec, 10 breaths at 8 sec, and 10 
breaths at 10 sec; 

• four deep breaths followed by an apnoea at the end of 
inhalation (full lungs), and 3 minutes of recovery; 

• four deep breaths followed by an apnoea at the end of 
exhalation (empty lungs). 

At the beginning of the experiment, before sitting, 
participants were asked to perform a small jump to 
generate a motion artifact in the MEMS signals of both 
devices for synchronization purposes.  

In this preliminary work, only signals acquired during 
the paced breathing phases will be utilized. 

 
2.2.  ECG and H-BCG Signal Processing  

The ECG signal was pre-processed to remove noise and 
breathing-related motion artefacts using a 4th-order, zero-
phase, band-pass Butterworth filter (0.5-30 Hz) [10]. 
Outliers were removed using the statistical method 
“grubs”, and the Pan-Tompkin algorithm was applied to 
extract the R peaks [11]. The RR intervals were computed 
as the time distances between consecutive R peaks.  

The H-BCG signals were processed using two distinct 
methods to extract both cardiac and respiratory activity 
(Figure 1). For cardiac activity detection, signals of the H-
F acceleration and roll rotations of the head were chosen 
[7], and band-pass filtered with 4th-order Butterworth (cut-
off frequencies: 5 and 25 Hz [10]), to enhance intra-beat 

vibrations for subsequent beats identification. The J peak, 
corresponding to aortic valve opening, was detected beat-
by-beat using an ECG-free algorithm [10] based on a 
template-matching technique [12].  

 

 
Figure 2. Morphological and temporal parameters computed on 
the ECG and H-BCG signals. 

To minimize false positives, each J peak detection was 
compared with the previously identified R peaks, and 
considered valid if only one J peak occurred between 
consecutive R peaks. If >2 J peaks occurred between 
consecutive R peaks, the heartbeat was deemed invalid. In 
cases of two J peaks, the distance from each to its 
preceding R peak was compared to the median of all 
previous J-R intervals, retaining the J peak closest to the 
median and discarding the other one. 

For respiratory activity, the displacement in the P-A 
direction of the H-BCG signal, computed through a double 
integration, was considered. Pre-processing included a 4th-
order, high-pass Butterworth filter (0.1 Hz). The beginning 
and end of each paced-breathing phase in the protocol were 
identified by examining the derived respiratory signal. For 
each participant, each phase was qualitatively scored as 
excellent, good, or poor, depending on the ability to 
visualize the relevant 10 breathing cycles. Only respiratory 
phases classified as excellent were further analysed, by 
automatically detecting the beginning of each inspiration 
as the minimum of the respiratory signal. Then, based on 
the duration of each computed respiratory cycle, defined as 
the time difference between two minimum points, only 
breaths lasting within ±0.5 s of the expected imposed 
duration (4, 6, 8, or 10 s) were included in the analysis. 

 
2.3. Computation of Temporal and 
Morphological Parameters   

For each subject and phase, temporal and morphological 
parameters were calculated (Figure 2), including beat-to-
beat duration from both the ECG (RR) and the H-BCG (JJ), 
the peak-to-peak amplitude difference between the J peak 
and the preceding minimum point and the corresponding 
slope (Slope). RR and JJ intervals were normalized for 
each subject and respiratory phase by their respective 
longest RR and JJ intervals. Similarly, morphological 
parameters, including peak-to-peak amplitude and slope, 
were normalized by the maximum amplitude or maximum 
slope, separately for each subject and respiratory phase. 
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Table 1: Feasibility analysis results for the four respiratory phases of the paced breathing protocol (median [25th; 75th percentile]). The 
first row reports the number of selected respiratory cycles for each respiratory phase. The second and third rows show the number of 
identified heartbeats per respiratory cycle in the acceleration H-F and roll axis, respectively. 

2.4. Folded Scattergrams and Parameters 

A folded scattergram (FS) is a graphical representation 
that visualizes changes in a parameter of interest, such as 
RR, according to the % of the respiratory cycle (0%: start 
of inspiration; 100%: end of expiration), as a cumulative 
representation over several breathing periods [13]. Each 
point on the FS corresponds to a specific value of the 
parameter of interest, with the y-coordinate representing 
the parameter’s normalized value and the x-coordinate 
representing the timing of such event as % of the 
corresponding respiratory cycle [13]. For temporal 
parameters, such as RR and JJ intervals, the x-coordinate 
represents the midpoint between consecutive peaks. 

Outliers were removed for each respiratory phase based 
on the median and the median absolute deviation (MAD) 
methods. The FS points were then fitted with sinusoidal 
harmonics in phase and quadrature, up to the third order, 
and the coefficients of the Fourier series were estimated by 
a least-squares algorithm [13]. The magnitude and phase 
of the first three harmonics were calculated. 

To evaluate the representativeness of the sinusoidal fit 
to the points in the FS and the feasibility of evaluating the 
CRC, several figures of merit were computed: coefficient 
of determination (R²) and its adjusted version (R² adj);  
from the Cosinor analysis [14], the acrophase (Φ), the ratio 
between the maximum amplitude (AO) and the midline of 
the oscillation (MESOR), along with the p-value of the 
Zero-Amplitude test; the median Euclidean distance and 
Nearest Neighbour distance. 

 
2.5. Statistical Analysis 

The effect of the imposed respiratory frequency phase 
was separately assessed on each computed temporal and 
morphological parameter using the Friedman test (p<0.05). 
If significant, post-hoc pairwise comparisons were applied 
to identify specific differences between phases (Wilcoxon 
Signed Rank test with Bonferroni Correction). 
 
3. Results 

3.1. Feasibility Analysis 

Table 1 reports the number of respiratory cycles and 
heartbeats analysed for each protocol phase in both H-F 
acceleration and roll signals, highlighting a higher number 

of  cycles when the duration was 6 or 8 seconds per breath 
(s/breath). Additionally, the number of identified 
heartbeats in the acc. H-F signal was consistently higher 
than in roll, reaching a 20% increase at 8 s/breath. As the 
number of analysable respiratory cycles in the 4-s/breath 
phase was very low, this phase was excluded from further 
analysis. 

 
3.2. Folded Scattergram 

Figure 3a shows the FS for temporal and morphological 
parameters obtained from one subject as an example. All 
parameters show a CRC, highlighting different behaviours 
and Φ in both temporal and morphological parameters.  

 
3.3. Statistical Analysis 

In RR and JJ intervals, as breath duration increased from 
shorter to longer, an increase in OA/MESOR and R2, and 
a decrease in Nearest Neighbour Distance and p-value of 
the Zero-Amplitude test were noticed. Although this 
pattern is present overall, only OA/MESOR and R2 

exhibited significant differences between protocol phases,  
in RR and JJ intervals, respectively (Figure 3b).  

The oscillation within the respiratory cycle of the 
morphological parameters was significantly more 
pronounced than that of the temporal parameters, as 
reflected in the higher OA/MESOR values. While a 
general pattern remains visible, fewer and non-significant 
differences were observed between the different protocol 
phases. 
 
4. Discussion  

We conducted a preliminary study to assess the 
feasibility of measuring CRC using cardiac and respiratory 
data acquired as H-BCG signal by S-EW technology. The 
results demonstrated the feasibility of the proposed 
approach during a paced breathing protocol with the 
subject in a seated position, highlighting that breath 
durations closer to physiological values (i.e., 6 and 8 
s/breath) were more suitable for highlighting the 
phenomenon. 

Changes in cardiac morphology and temporal 
parameters were visible at different % of the respiratory 
cycle and when measuring with S-EW. In particular, it  

 4 s/breath 6 s/breath 8 s/breath 10 s/breath 
Respiratory cycles  2 [1;8] 6 [3;8] 6 [5;9] 4 [4;5] 
Heartbeats -Acc. H-F 6 [3;24] 34 [17;43] 50 [42;64] 41 [31;49] 
Heartbeats - Roll 10 [2;24] 31 [18;38] 40 [39;59] 37 [35;48] 

Page 3



 
Figure 3. (a) Folded scattergram of RR and JJ intervals, Peak-to-Peak amplitude, and Slope for a single subject on the acceleration H-F 
axis. The x-axis represents the percentage of the respiratory cycle [%], while the y-axis shows the normalized parameter values [0-1]. 
The vertical dotted line at 50% of the respiratory cycle represents the imposed end of exhalation-beginning of inhalation. Each coloured 
dot corresponds to a heartbeat within the respiratory cycle, and the coloured solid line represents the fitted function. Data is colour-
coded: purple for 6 s/breath, green for 8 s/breath, and blue for 10 s/breath. (b) Boxplots of some of the parameters computed on the H-F 
axis on temporal parameters RR and JJ intervals. Horizontal lines indicate significant differences (p<0.05).

appears possible to visualize and quantify physiological 
Respiratory Sinus Arrhythmia from H-BCG using the JJ 
time series, in alignment with RR intervals, besides the 
noisier signal and a lower sampling frequency. 
Furthermore, the detected modulation in H-BCG Peak-to-
Peak amplitude and Slope could be a potential correlate of 
respiratory-modulated preload and SV variations.  
 
5. Conclusion  

This work shows for the first time the feasibility of 
automatically measuring CRC when extracting cardiac and 
respiratory activity from MEMS embedded in S-EW 
technology, with the subject in a seated position during 
paced breathing, thus paving the way for future 
investigations during spontaneous breathing in real-life 
settings. 
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